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ABSTRACT 

Zeta-function regularization is applied to evaluate the one-loop effective potential 
for SO( 10) grand-unified theories in de Sitter cosmologies. When .the Higgs scalar field 
belongs to the 210.dimensional irreducible representation of SO(lO), attention is focused 
on the mass matrix relevant for the SU(3) @ SU(2) @ U(1) symmetry-breaking direction, 
to agree with low-energy phenomenology of the particle-physics standard model. The 
analysis is restricted to those values of the tree-level-potential parameters for which the 
absolute minima of the classical potential have been evaluated. As shown in the recent 
literature, such minima turn out to be SO(6) @ SO(4)- or SU(3) @ SU(2) @ SU(2) @ V(l)- 
invariant. Electroweak phenomenology is more naturally derived, however, from the former 
minima. Hence the values of the parameters leading to the alternative set of minima have 
been discarded. Within this framework, flat-space limit and general form of the one-loop 
effective potential are studied in detail by using analytic and numerical methods. It turns 
out that, as far as the absolute-minimum direction is concerned, the flat-space limit of the 
one-loop calculation about a de Sitter background does not change the results previously 
obtained in the literature, where the tree-level potential in flat space-time was studied. 
Moreover, when curvature effects are no longer negligible in the one-loop potential, it is 
found that the early universe remains bound to reach only the SO(6) @ SO(4) absolute 
minimum. 
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1. Introduction 

Over the last ten years, the idea by Coleman and Weinberg (1973) on radiative corrections 

at the origin of spontaneous symmetry breaking has played a very important role also 

in cosmology. Since the singularity theorems by Penrose, Hawking and Geroch show that 

Einstein’s general relativity leads to the occurrence of singularities in a generic way, modern 

theoretical cosmology has focused instead on quantum theories of gravitation (Hawking 

and Ellis 1973, Gibbons and Hawking 1993, Esposito 1994). As a first step of this program, 

one faces the problem of making sense of quantum field theory in curved space-time (BirrelI 

and Davies 1982), where matter fields are quantized via algebraic or canonical or path- 

integral methods, whereas gravity provides a curved, fixed background 4-geometry. 

In Allen (1983) and Allen (1985) the one-loop approximation of path integrals in 

curved space was applied to study massless scalar electrodynamics and SU(5) non-Abelian 

gauge fields in de Sitter space. For this purpose, the author used zeta-function regulariza- 

tion (Hawking 1977, Esposito 1994), and was able to show that the inflationary universe 

can only slide into either the SU(3) @ SU(2) @ U(1) or the SU(4) @ U(1) extremum, in the 

case of SU(5) gauge models. In his analysis, Allen (1983, 1985) was dealing with Wick- 

rotated path integrals, leading to a Riemannian background 4-geometry with S’ topology 

and constant scalar curvature, i.e. the Euclidean-time version of de Sitter space-time. 

More recently, work by the authors (Buccella et al 1992, Esposito et al 1993) has tried 

to improve the analysis appearing in AlIen (1985). Th e main results of our recent papers 

are as folI0w.s. 
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(i) The technique originally developed in Buccella et al (1980) to study spontaneous 

symmetry breaking of SU(n) for renormalizable polynomial potentials has been general- 

ized, for SU(5), to a de Sitter background. 

(ii) Algebraic and numerical techniques, jointly with Dirac’s theory of constrained 

Hamiltonian systems, have been used to prove that, to be consistent with the exper- 

imentally established electroweak standard model and with inflationary cosmology, the 

residual gauge symmetry group of the early universe, during the whole de Sitter era, is 

W(3) c3 SU(2) c3 ci(l). 

Thus, a deeper understanding of the results in Allen (1985) was obtained, and the numerical 

integration of the corresponding field equations confirmed the existence of a sufficiently 

long de Sitter phase of the early universe. However, since the technique described in Allen 

(1985) enables one to evaluate the one-loop effective potential for all non-Abe&m gauge 

theories in de. Sitter space, a naturally occurring question is whether one can repeat this 

analysis in the case of physically more relevant GUT theories in de Sitter cosmologies. For 

this purpose, our paper studies the one-loop effective potential of SO(10) GUT theories. 

SO(10) gauge theories as unified models for strong, electromagnetic and weak inter- 

actions (Fritz& and Minkowski 1975, Tuan 1992) have been studied over many years for 

their interesting physical properties. There are several motivations for this choice and 

we just review some of them. Unlike N(5) in fact, where a complete fermionic family 

has to be classified within two different irriducible representations of dimension 10 and 5 
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respectively, the SO(10) theory is able to accommodate in the 16-dimensional spinor repre- 

sentation one fermionic family plus a right-handed neutrino. Furthermore, the orthogonal 

groups like SO(10) are anomaly-lee with the exception of SO(6). 

Finally, the strongest motivation for this choice can be found in the predictions for 

nucleon lifetimes. In this caSe in fact, SO(10) models enable one to obtain higher values 

for the masses of the lepto-quarks which mediate proton decay and which were predicted 

to be too low, with respect to the experimental lower limit, in the minimal SU(5) model. 

This property is essentially related to the presence of an intermediate symmetric phase 

between the SO(10) symmetry at GUT scale and the SU(3) @ SU(2) @ U(1) symmetry at 

weak scale, and it provides the high flexibility of these models with respect to the simpler 

SU(5) theory. In particular, recently, the more precise determination of the gauge coupling 

constants at the scale Mx (i.e. the mass of the 2’ gauge boson) has been used to show that 

the three running coupling constants as(/.~),ax(~),ur(~) of G E SU(3) @ SU(2) @ U(l), 

if only standard-model particles contribute to the renormalization-group equations, meet 

at three different points, and only the matching points of or(r) and as(p) correspond to 

a value of the scale sufficiently high to agree with the experimental lower limit on proton 

decay: t p-e+ *o > 9.10” years (Aguilar-Be&es et al 1992), which corresponds to a mass 

for the leptc+quarks which mediate that decay of about 3. 1015 GeV (Buccella et al 1989). 

Indeed it has been observed that SO(10) is very promising to modify the SU(5) predictions 

in such a way to prevent conflict with experiment due to its intermediate symmetry group 

G’ containing SU(2)n and (or) SU(4)ps (see below). 
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A complete analysis of the possible symmetry-breaking patterns with Higgs particles 

in representations with dimension 5 210 and with only an intermediate symmetry group 

G’ between G and SO(10) has led to only four different possibilities for a physically rele- 

vant SO(10) unified model (BucceIla 1988) [table I]. With the notation of table I, SU(3)c 

is the colour group, SU(~)L,R are the left and right SU(2) groups whose representations 

differ by their behaviour with respect to he&city. Moreover, B - L is the difference be- 

tween baryonic and leptonic number, D is the discrete left-right interchanging symmetry 

introduced in Kuzmin and Shaposhnikov (1980), and SU(4)ps denotes the SU(4) Pati- 

Salam group (Pati and Salam 1973). For these models, using the one-loop approximation 

for the renormalization-group equations, the upper limit for the values of the symmetry- 

breaking scales pf SO(10) (Mx), and of G’ (MR), is reported for the different models in 

their minimal formulation [table II]. 

As one can see, both models without D symmetry yield sufficiently high values for 

the scale Mx, and the model with G’ > SU(4)ps predicts MR = 10” GeV, while the 

one with G’ > SU(3)c @ U(~)B-L gi ves rise to a value about two orders of magnitude 

smaller. Using these results and their implications for proton decay we can safely restrict 

our analysis of the cosmological implications of SO(10) GUT model, to the ones which 

appear physically more relevant and which contain the Higgs field in the 210~dimensional 

irreducible representation. 

Our paper is organized as follows. Section 2, aimed at cosmologists who are not 

familiar with grand-unified theories, describes the basic elements of SO(10) GUT models in 

particle physics, the tree-level potential for the 210~dimensional irreducible representation, 
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and the mass matrix relevant for the SU(3) @ SU(2) @U(l) symmetry-breaking direction. 

Section 3, after a review of the Faddeev-Popov form of the amplitudes in quantum field 

theory, derives the one-loop form of the effective potential for SO(10) GUT theories studied 

about a de Sitter background. The numerical analysis of the corresponding flat-space limit 

is then carried out in section 4. Section 5 studies by numerical methods the one-loop 

effective potential in the region where no asymptotic expansion for infinite or vanishing 

curvature of the special function occurring in such a potential can be made. Results and 

concluding remarks are presented in section 6. 

2. SO(10) GUT theory in flat space-time 

The group SO(10) is defined as the set of 10 x 10 orthogonal matrices with unit de- 

terminant, and with the usual product rules. It has 45 generators here denoted by Tij 

(i,j = O,l,. . . , 9) obeying the following commutation relations: 

[T,k,Tlm] =i(6jl Tmk + 6jm Tkl f 6kl Tjm + 6km Tlj) . (2.1) 

Considering the vector irreducible representation (IJ) of the group, which we indicate by 

vl, the action of the generators Tjk on it is given by 

Tjk PI z i(6kl Pj - Jj, ‘6’k) . (2.2) 

Analogously, the action of Tkl on the Kronecker product of two representations ‘pi and ~j 

is given by 

Tkl[$‘i@‘bj] E(Tkl pi) @$j +Fi@(Tkl ‘bj) . (2.3) 
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To construct a satisfactory gauge theory based on the SO(10) local symmetry, which 

has the proper residual symmetry in the low-energy limit, we need a Eggs mechanism to 

break the symmetry spontaneously (O’Raifeartaigh 1986). This is based on the presence 

of a fundamental scalar particle (Higgs field), belonging to one or more irreducible repre- 

sentations (hereafter referred to as IRR’s) of the gauge group, whose dynamics is ruled by 

a Higgs potential. In the present case, we are going to study the most general, renormal- 

izable and conformally invariant Higgs potential constructed by using only the IRR 210, 

which is obtained by the completely anti-symmetrized product of four different u’s as 

,a abed = N &a 8 vb 8 PC @ bd] (2.4) 

where N is the normalization constant. The 210 IRR has four independent quartic in- 

variants, i.e. 1/d114 and three non-trivial invariants (see (2.10)-(2.12)), hence the Higgs 

potential we are going to construct will be a function of these. Multiplying two 210 and 

symmetrizing one gets the Clebsch-Gordan decomposition 

w @ 210),,,. = ~~~~~~210~770~(1050~1050~~4125~8910~5940 (2.5) 

where a,B,J7J and so on denote the IRR’s with dimension 45, 54, 770 respectively. 

The IRR’s 45,210 and (1050 $1050) gi ve no contribution along the SO(6) @ SO(4)- 

invariant direction. This can be easily understood noticing that $5 and (1050 $1050) do 

not contain singlets along the above direction and that the only singlet contained in the 

210 representation is such that 

c& (1%) (lyl, = 0 . (2.6) 

6 
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With our notation, (l,l,l) is the only singlet with respect to the SU(4) 8 SU(2) @ 

SU(2) group contained in the 2lJ representation. Moreover, the left-hand side of (2.6) 

is the Clebsch-Gordan coefficient (Cornwell 1984b) corresponding to the decomposition 

(Ll,l)~@(l,l,l)~~ (1,1,1&a. 

Hence the only quartic non-trivial invariants, apart from the fourth power of the 210 

norm which is isotropic in the space of IRR’s and thus cannot discriminate among the 

inv=ri=nt dr=ctions, =r= ll(d4)fil12, ll(W)~l12 and 1j(@)isss 11’ (where for example, the _ 

symbol (&$)42 stands for the 45 IRR contained in the product of two 210). 

By virtue of the above considerations, the most general renormalizable and confor- 

mally invariant Higgs potential, made out of the 210 representation only, turns out to be 

a linear combination of the above invariants, with arbitrary coefficients 91, 92, ~3 and X 

V(4) = 91 Il(4wrsl12 + 92 ll(w~11* + Q3 ll(44)l&ol12 + x 11~114 . (2.7) 

The IRR 1050 is quite complicated. We thus prefer to express the term il(@)~II* 

as a function of the representations 45, 54 and 210 

ll(~4h!d = -~llw)ul12 - $m4ll* + $#J+lJ + $jll~ll’ . (2.8) 

In other words, since the space of group invariants is a vector space, we can evaluate the 

components of ~~(~~)rsse~/* along the basis vectors. Thus, by inserting (2.8) in (2.7) we get 

the flat-space potential 

V(d) = (91 - $96) ll(w~ll* + (9* + ;9s> ll(~dJ)~l12 

- $3 ll(44Ml” + (&-9, + A) 11414 . 
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To clarify the definitions of (&+)=, (&$)rie and (&)E, we point out that from the - 

symmetrized product of two IRR’s 210 (&bed) it is possible, using the Levi-Civita symbol 

E;,,,,.;~, to construct the IRR (hereafter we sum over repeated indices) 

(%.b = (%ff 21 2 dcdef 4ghil = &‘abcdefghil dcdef 4gh;l . (2.10) 

Analogously, using the SO(10) invariance of the Levi-Civita symbol, the 210 representation 

can be denoted by 4, or, equivalently, 6 indices of the completely antisymmetric tensor 

a!3 abed = (ZLQ).fghil = ‘a?:, %cd .$fhi, ‘$obmrt 4cdmn 

=&I ‘kbcdefghil ‘$obmn 4cdmn (2.11) 

and 

4bmno + 6bm.o ‘&n,,) a#b . (2.12) 

If a = b we have 9 more terms orthogonal to the trace, here omitted for the sake of brevity. 

Starting from the general potential (2.9), a complete analysis of its absolute minima 

would require first of all, the computation of the above potential along every direction of 

possible residual symmetry and secondly the determination of the ranges for the parameters 

gi corresponding to the different residual symmetries for the absolute minima. This is 

exactly what was done in the case of W(5) (Allen 1985, Buccella et al 1992, Esposito et 

al 1993) with the Higgs scalar field in the adjoint representation. 

Unfortunately, the technical difficulties due to the complexity of the group SO(10) 

with respect to the unitary ones and the size of the IRR used, make it impossible to 

extend the previous analysis to the present case. For this reason, at least at this stage, 
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we restrict our considerations to the study of the modifications, induced by one-loop and 

curvature effects (section 3), of the symmetry-breaking pattern, for choices of the param- 

eters IJ; corresponding to absolute minima of the potential at tree-level, invariant under 

the residual-symmetry group SU(3) @ SU(2) @ U(1). These are the only ones relevant 

for particle physics in flat space, because they predict the correct low-energy-limit phe- 

nomenology. 

The most general singlet 40 with respect to the group W(3)@ N(2)@ U( 1) contained 

in the 210 representation is 

40 = 1234 + h45.3 + 45012 > 

127s + 43478 + 45.97s + d?l200 + h490 + 4J5800 + Z347880 (2.13) 

where * 
( ) 

z: + zi + zs = 1. Such a decomposition can be obtained by using the generators 

described in appendix A. Varying the z; parameters in their ranges, we get the following 

residual-symmetry groups (see comments in section 1): 

Q = 0 + SU(3)c c3 SU(2)r. @ su(2)‘q @ u(l)B,L (2.14a) 

** = *s = 0 -+ SU(3)c CEI SU(2)L @ Su(2)R @ u(l)B-L x D (2.14b) 

*1 = 22 = 0 -+ SU(4)PS @ su(2)L @ Su(2)R (2.14~) 

2 = 2 = 23 + SU(5) @J U(1) 

oth=re= -+ Sum c3SU(2JL c3 u(~)~,~ E~u(I)~-~ 

(2.14d) 

(2.14e) 

where TSR is the r-component of the Su(2)R group. 
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Substituting (2.13) in (2.9) we get in flat space-time 

F = V(h) = ;ja + ;j7 + ifs + (A - 6)) l140114 (2.15) 

where 

ar945 4 ( - 10&n + 2892 + 140~s) (2.16) 

8 
r=p (2.17) 

1 
6E-zg3 (2.18) 

(2.19) 

j, (*~*s+~)2+(11*2~~+fa (2.20) 

fs=30(*1*s+$2 + 3oz;z; + ( 22’ )2 2r; - 2 - 3zf 

+ 5(r: +q2 + 52: 2-q + A* ( 3), + yz; . (2.21) 

Since in the following analysis 6 is always negative and Q may take negative values, the 

tree-level potential (2.15) is unbounded from below, unless we impose the restriction 

A 2 !g (fa),x + $qh)m*x . (2.22) 

Note also that contributions proportional to a cubic term in the potential (denoted by p 

in Acampora et al (1993)) are set to zero, since we are assuming conformal invariance of 
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our model (Buccella et al 1992, Esposito et al 1993). In the models proposed in Acampora 

et al (1993) a complete study of the potential at tree-level for the case zr = 0 has been 

carried out, including the range of the bare-potential parameters such that the absolute 

minimum lies in the two-dimensional surface (zr = 0). 

However, since we are interested in the modification of the bare potential produced 

at one-loop by de Sitter curvature, we can use only part of the inequalities appearing in 

Acampora et al (1993). More precisely, the parameters are bound to lie in regions where 

the mass spectrum is positive and the first derivatives of the effective potential vanish. 

Thus, the allowed ranges for the parameters become 

(1) 21 = 0 , Z3 = 1 =+ SO(6) @ S0(4) - Su(4) 8 Su(2)n 8 Su(2)R 

y>O 6.~0 p=O a>-27 

(2) ‘: + z3’ = 1 =+’ Su(3)C ‘8 Su(2)L @ Su(2)R @ u(l)&L 

a>0 p=o 
3 1 

-p<r<-p 

3(9a2 + 9ay - 18~~ + 4(3o + 77) dm) < 6 < 3r2 

32O(r - dw) lO(3a +-r) . 

In the case zi = 1, ts = 0 one finds that it is impossible to get positive mass for both (6,2,2,- 

2/3) and (1,2,2,2). In fact this is a saddle point in the space representation. Indeed, since 

we are interested in the case when the intermediate symmetry group contains SU(4)ps for 

the reasons described in the introduction, we can restrict our analysis to case (1). 

11 
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For our purposes we need to compute the mass matrix for the gauge bosom. As it 

is well known, this comes from the kinetic term for the Higgs field when we expand this 

scalar field around its vacuum expectation value tie 

@bOrD'+O) = @ (~~b~o,~d+++;bk-d~ (2.23) 

where square brackets denote the scalar product in the 210dimensional space and G is 

the gauge coupling constant of the SO(10) group. S’ mce the general form of $0 is given, 

we can evaluate the action of the 45 generators T,,b on it. In particular, by taking the 

decomposition of the adjoint representation 45 under the group SU(3) @ SU(2) @ U(1) one 

finds 

45=(8,1,0) @ (I,3,0) $ (l,l,l) $ (1,&O) $ (1,1,-l) 

@ &LO) @ (3,1,2/S) $ (3,1,--2/S) c+ (C&2,5/6) @ @,2,-5/6) 

C+ (3,2, I/6) $ (3,2, -l/6) . (2.24) 

The readers not familiar with this group-theoretical calculation are not expected to repeat 

the lengthy derivation, but they only need to know that, using a standard notation in 

particle physics, (Z,r,z) denotes the tensor which behaves as an I-dimensional represen- 

tation under SU(3), r-dimensional under SU(2) and takes a value=2 when acted upon 

by the U(1) generator. By virtue of the Wigner-E&art theorem (Cornwell 1984a) the 

scalar product on the right-hand side of (2.23) is given by the product of 11&,112 with a 

Clebsch-Gordan coefficient. Thus, defining m2 z ~211~ol12, and evaluating the Clebsch- 

Gordan coefficients, one finds that the non-vanishing eigenvalues mfl,r,+) are mf,,,,,) = 

12 
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mf1,1,-1, = ,2 [$I with degeneracy 1, n~?,,~,~,s) = m 2 [$(4 + G)] with degeneracy 

3, 7$3,2,,,6) = m 2 ~z~++++ 
1 

2 

J- I 
f 22 a with degeneracy 6, and mf,,2,-s,ej = 

mz f.z+fi;+r~+ 
1 

ti s rlz2+ J 1 $ ~2~s with degeneracy 6 as well. Note that this is the 

mass matrix relevant for the SU(3) @ SU(2) @ U(1) symmetry-breaking direction. This 

choice is motivated by low-energy phenomenology of the particle-physics standard model, 

and all groups containing SU(3) @ SU(2) @ U(1) lead to the same kind of mass matrix (of 

course, the zi parameters take different values for different groups). Hence we only rely on 

the 4. singlet appearing in (2.13). 

3. One-loop effective potential in de Sitter space 

The (formal) quantization of gauge theories via Feynman path integrals leads to quantum 

amplitudes involving not only the Wick-rotated action, but also gauge-averaging terms 

and corresponding ghost fields. For example, in the case of vacuum Maxwell theory in 

four-dimensions, one deals with amplitudes of the form 

zig1 s /j&[A] ~[@(a)] det [y] exp [-lM, ~F,X”” &G&z] . (3*1) 

With our notation, A s A,,&‘ is the gauge-connection one-form, p,[A] a suitable measure 

on the space of such connections, @(A) an arbitrary functional of the gauge-connection, 

13 
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F,, E V,A, - VUA,, th e e ec romagnetic-field tensor corresponding to the Maxweil- 1 t 

curvature two-form F E dA. Moreover, g is the Biemannian (i.e. positive-definite) back- 

ground four-metric, and V, is the covariant derivative obtained from the affine connection 

V existing on the background four-geometry (&,g). The amplitudes (3.1) are more 

conveniently re-expressed as 

-%I = 
J 

PI [A] i&k, c’] exp ( - 7~) 

where 

I;: = Igh + JM, [~F,,“F~u+ :[*(A)]‘] md4+ . 

(3.2) 

In (3.2)-(3.3), 6’is a positive real number, Irh the ghost action corresponding to the form 

chosen for @(A) (Itzykson and Zuber 1985), and ,C 2 c, c’] is a suitable measure on the space [ 

of ghost fields. The term $ [9(A)] a in the total Euclidean action is usually referred to in 

the literature as gauge-fixing term, since its form is clearly suggested by what would be set 

to zero at the classical level. However, since in the non-Abel& case no gauge choice exists 

at the classical level for the S’ topologies we are interested in (Jungman 1992, Esposito et 

al 1993), we use instead the terminology gauge-aeemging. By this we mean a contribution 

to the action which enables one to extract the volume of the gauge group and to obtain 

one-loop quantum amplitudes manifestly independent of the choice of @(A). The effects 

of the longitudinal and transverse parts of the gauge-potential are then decoupled, and no 

cross-terms occur if iP(A) is suitably chosen (Allen 1983, Allen 1985). 

14 
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Within the framework of inflationary cosmology, the quantization of non-Abelian 

gauge fields has been recently studied in the case of SU(5) GUT theories (Allen 1985, 

Buccella et al 1992, Esposito et al 1993). In this case one starts from a bare, Euclidean- 

time Lagrangian 

L = &(FvF’~) + ;Tr(DFv) (II’@ + vo(c+,p) (3.4) 

where both the gauge-potential A* and the Higgs scalar field ‘p are in the adjoint represen- 

tation of SU(5). Note that boldface characters are used to denote the curvature 2-form F in 

the non-Abelian case, to avoid confusion with the curvature 2-form Fin the Abelian case. 

The background 4-geometry is de Sitter space with S’ topology. The background-field 

method is then used, jointly with the gauge-averaging term first proposed by ‘t Hooft 

L, = ~T~(v,A'-~E;~-~[~~,~])* 

This particular choice is necessary to eliminate in the total action cross-terms involving 

Tr(V,A’) and th e commutator [vs,‘p], where ‘ps is a constant background Higgs field. 

After sending Z + co (Landau condition), and denoting by R = $r204 the volume of a 

4-sphere of radius a, the resulting one-loop effective potential is (Allen 1985) 

V(VO) = WPPO) + $ log det pea [s.b ( - g,,“O + %) + ~rv~~b(vo~] 

+ & log det /J-~ - &bn + 
@Kl I 1 k&b ?,, 

since the ghost determinant cancels the longitudinal one. 
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To understand how to generalize (3.6) to SO(10) GUT theories, we have to bear in 

mind only the first line of (3.6), since, by virtue of the Coleman-Weinberg mechanism, 

only gauge-field loop diagrams contribute to the symmetry-breaking pattern in the early 

universe (Allen 1983, Allen 1985, Buccella et al 1992). Denoting by $ the logarithmic 

ing the functions A and P by means of derivative of the l? function, and defin 

d(r) E ; + 5 - 
I 2 

3 I( 

,3+&E 
Y(Y - ;)(Y -3)+(y) dy 

P(z) G ; + .z 

one thus finds for the N(5) model (Allen 1985) 

v(%) = h’o(vo) - & ~[d(.‘m;) + P(a2m;)log(Psos)] 
1=1 

(3.7) 

(34 

where the m: are the 24 eigenvalues of the mass matrix Mzb. 

In the case of the SO(10) GUT model, the same method used for SU(5) in Allen 

(1985) shows that the one-loop effective potential V takes the form (see appendix B) 

V = vc - &e [A( 
,=1 

where (cf (2.15)) 

c = ifa + ;j7 + if6 + (A - 6)) lItjo,, + $,140,,2 ( . 

(3.10) 

(3.11) 
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The corresponding one-loop effective potential in (3.10) 1s obtained by inserting the fol- 

lowing formulae: 

+d[o'm'$] +3d[a2m2;(i; +z;)] 

g P(a2mf) = a272 (lo*: + 4Jz t1*2 + y*; + 129 

+ a’m’ ( 5 
jr,4 + qJZz:*2 +4r;z; 

55 
+ 45 212: + -& + ---zlz:zs A + 4z:r: 

+ 2JZqr2*,Z + 5z;z: + 32; 
> 

. 

4. Flat-space limit 

(3.12) 

(3.13) 

The one-loop effective potential (3.10)-(3.13) can hardly be used for an analytic or nu- 

merical study of the absolute minima, since it involves a large number of complicated 

contributions. We therefore begin by studying its flat-space limit, i.e. its asymptotic be- 

h&our when the 4-sphere radius a tends to 00. The corresponding asymptotic form of 

17 
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d(r) is (Allen 1985) 

d(r) w - ST*+; log(z)+~z2+r+const.+O(r-‘) 
> 

(4.1) 

For the purpose of numerical analysis at a -+ 00, the expansion (4.1) can be further 

approximated as 

d(z) N ; (3 - log( 22)) (4.2) 

Thus, defining (cf end of section 2) 

4 hl E ;z; + z + z,” + 
2Jz 
-21 

3 

2 
22 + J - z2z3 

3 

4 2 hz++z+i;- jz2z3 J (4.4) 

h4 s ;(zf + ~2’) 

hi s ;h; + ;h; + : + ;h: 

equations (3.10)-(3.13) and (4.2) lead to 

v c 3 -_--- 
p* p4 

’ %f 
8n2Y 4 [ ( 

3 - log(h:)) + ;h; (3 - log(h:)) 

+ Z(3 -log(@) + ;h+log(h:)) -hilog( . 
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(4.7) 
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One-loop efiective potential for SO(10) GUT theories in de Sitter space 

The problem now arises to find the absolute minima of the potential (4.9) by numer- 

ical methods. Since ~1, ~2, zs lie on a unit 2-sphere, they can be expressed as ~1 = 

sin(B)cos(rp),z2 = sin(@) ,LS = ax(O). For given values of the parameters a,~, X,6 

appearing in (3.11), we have thus to minimize with respect to 6,ip,y. For this purpose, 

we point out that ymin should be 5 1, since it is the ratio of the gauge-boson mass to the 

cut-off value. Hence one gets a further restriction on X which, combined with the inequality 

(2.22), yields the sufficient condition 

x>~o+~(f,),_+~(fa)m*~ . (4.10) 

With our notation, X0 is given by 

x Cl = $[;h:(34og(h;)) +;h;(Mog(h;)) 

+ z(3 -log@:)) + ;h:(3 - ld4)) - ;h:lq(y’)]mince ~) - f7in (4.11) 

where 7;s the function such that (i+ X)y4 = ?. Th e corresponding numerical analysis, 

carried out by using the MINUIT minimization program avaiIable in the CERN libraries, 

shows that the absolute minimum always lies in the 0 = 0 direction. This is the SU(4)ps 8 

sum @OUR symmetry-breaking direction (see (2.14~)). Thus, as far as the absolute- 

minimum direction is concerned, the flat-space limit of the one-loop calculation about a 

de Sitter background does not change the results found in Buccella et al (19&j), where the 

tree-level potential in flat space-time was studied. Remarkably, since the value of y leading 

to the absolute minimum of V in the presence of symmetry breaking has been found to be 
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Ymin E (0.4,0.8] in the regions where the inequality (4.10) is satisfied, one can evaluate p 

from (4.8) as 

p=Mx . 
Ymin 

(4.12) 

This formula for p can be used to derive the values of the 4-sphere radius corresponding 

to given values of the dimensionless parameter pa (see below). 

To complete this section, we find it helpful for the reader to evaluate the behaviour of 

the flat-space-limit one-loop effective potential as 0 + 0, since .4 = 0 yields the absolute- 

minimum direction as we just said. The analytic calculation shows that the potential V 

in (4.9) obeys the relation 

lii0V(X,y,8) E vim = 5 ?A- $ + ilog 
[ I 

. (4.13) 

The corresponding behaviours of V&, for various values of X (X = 0.03,0.02,0.015,0.012) 

are plotted in figure 1, when Y E [0, 11. 

5. Numerical evaluation of the absolute minima 

As one can see from equations (3.10)-(3.13), the one-loop effective potential for our cosmo- 

logical model takes a complicated form, and it is not clear whether curvature can modify 

the results of section 4, once the same values for a,r,6,X have been chosen. The cor- 

responding absolute minima have been evaluated using again the MINUIT minimization 
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program and choosing different values for the dimensionless parameter n~a, since it is con- 

venient to work with the dimensionless form of the one-loop potential, obtained dividing 

(3.10)~(3.13) by pL4. Of course, the parameters in the effective potential are a,~, 6, X,na, 

whereas the arguments are y, 0, v. 

Interestingly, if /~a is < 1, the term fiil~~li’ in the potential (3.10)-(3.13) dominates 

over all other contributions, and hence does not lead to any symmetry breaking. Thus, only 

intermediate values of pa are relevant for the symmetry-breaking pattern. In this case the 

absolute minima are still found to be SO(6) 8 S0(4)-’ invariant (for them 6’ = 0), providing 

the inequality (4.10) is satisfied. In figures 2-3, obtained setting pa = 30,300 respectively, 

the one-loop effective potential is plotted as a function of y when (I = y = 5 = 0. Note 

that these particular values are chosen since the flat-space effective potential (4.13) is 

independent of u,y,6. Hence a,~,6 can be set to zero for simplicity when curvature 

vanishes, whereas in the presence of curvature they are set to zero to compare the flat- 

space analysis with the de Sitter case. 

A naturally occurring question is what can be learned from the comparison of figure 

1 with figures 2-3. Indeed, the values of the independent variable y for which the absolute 

minima are attained are modified in the presence of curvature. The smaller pa (stronger 

curvature), the more substantial the change of the shape of our plots. In particular, figure 

2 shows that for pa = 30 and a = 7 = 6 = 0 no symmetry breaking occurs even though 

for other choices of values for o,-y, 6, non-trivial absolute minima are present. By contrast, 

from figure 3, corresponding to /.~a = 300, the effects of curvature on the absolute minima 

of the potential can be easily seen (cf figure I). 
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Remarkably, our numerical investigation shows that, providing the mass matrix is 

positive-definite, the potential is bounded from below, and the gauge-boson mass remains 

smaller than the cut-off value, the absolute-minimum direction remains SO(6) @ SO(4)- 

invariant in flat or de Sitter space, if the tree-level potential has this invariance property. 

To help the reader, table III shows, for the same values of the parameters used in figure 

3, the values taken by ymin and the corresponding values of the dimensionless one-loop 

effective potential. The 0 and p entries are omitted since 8 = 0 and ‘p is undetermined in 

the presence of spontaneous symmetry breaking along the SO(6) @ SO(4) direction. 

6. Results and concluding remarks 

The main results of our investigation are as follows. 

First, the one-loop effective potential of SO(10) GUT theories in de Sitter space has 

been obtained for the first time. This analytic result represents the continuation of the 

program initiated in Allen (1985), h w ere the tools necessary for any non-Abelian gauge 

theory in de Sitter space were described in detail. Note that, while (3.10) holds for any 

irreducible representation of SO(lO), (3.11) re li es on the 210 representation, and (3.12)- 

(3.13) lead to a particular form of such potential, once SU(3) @ SU(2) @ U(1) invariance 

for the mass matrix is required to agree with electroweak symmetry. 

Second, the flat-space limit of the corresponding Coleman-Weinberg effective potential 

has been evaluated for the 210 representation. 
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Third, the numerical analysis of absolute minima has been carried out in the case 

of the mass matrix relevant for low-energy-limit phenomenology. Interestingly, de Sitter 

curvature does not affect the flat-space symmetry-breaking pattern, leading only to the 

SO(6) @ SO(4) symmetry-breaking direction. 

A naturally occurring question is whether the analytic study of absolute minima can be 

performed, to check the results of our numerical investigation. In principle, this research 

appears possible, although it goes beyond the author’s computational skills, due to the 

many parameters appearing in the SO(10) effective potential. For the time being, we 

should emphasize that our results, although obtained after a time-consuming numerical 

analysis, remain preliminary. 

It has been our task to work under the restrictive conditions summarized at the end 

of section 5, while other forms of the mass matrix remain unknown in the literature. Thus, 

a complete mathematical treatment similar to what was done in Allen (1985) for SU(5) 

theories is lacking, and appears to be a topic for further research. Moreover, since the 

Higgs field (if it exists) is actually varying in time, it appears necessary to evaluate the 

one-loop effective potential of non-Abelian gauge theories in closed FRW cosmologies, de 

Sitter being just a particular case. This more complicated analysis would supersede the 

approximations made in Allen (1983) and Esposito et al (1993) to study the evolution of 

the early universe. 
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Appendix A 

The readers not familiar with group-theoretical methods in particle physics may find it 

useful to know that the generators used to obtain the decomposition (2.13) of the 40 singlet 

are such that (see (2.1)-(2.3)) 

T13 + TM = AZ (A.1) 

Tu - T34 = X3 (A.21 

Tn + T3, - 2Tss = 4 X8 (-4.3) 

TM - T33 = XI C-4.4) 

T15 + Tzs = As (A.51 

TIS - Tzs = h 64.6) 

Gs + Gs = h (-4.7) 

T3s - T45 = As (=4J3) 

where Xi are the Gell-Mann matrices for the SU(3)c group (Cornwell 1984b). Moreover, 

for the right part of the SU(2) group contained in SO(4), one finds 

; (TTO - T.,) E T; (A.91 

; (Go + Tao) E T; -- (A.10) 

-; @-A + Go) s T; (A.ll) 
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whereas for the lefl part of the SU(2) group in SO(4) one obtains 

; (TV + Ts,) = T; 

; (%o - Tm) E T; -- 

-- ; (Tn - Too) = T; 

(A.12) 

(A.13) 

(A.14) 

Appendix B 

To obtain the one-loop effective potential (3.10)-(3.11) one starts from the bare, Euclidean- 

time Lagrangian (cf (3.4)) 

L = +(F,,F’*) + ++Pd) (DV) + vcl(d) (B.1) 

where D, E 8, - iPAnt Tab V’a, b = 0, . . . . 9. According to the background-field method, 

one expands the field 4 as 

d=do+J (B.2) 

where 4s is the background value, and &is a perturbation. The 4-metric g is also expanded 

as in Allen (1983, 1985). The resulting one-loop form of L, i.e. the Lagrangian quadratic 

in the perturbations, is 

L(l) = $T~(F~~F~Y)+ :~~(D$)(DP$) 
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+ 7 [ (V#)‘-] [ < 5 ) T’” 1 $0 > - < &I 1 T’” I T > 1 
2 #I$ 

+~A:“<Qs,T’mTPq,~s,APqr+VO+~(~) w . (8.3) 
#=&I 

Moreover, the gauge-averaging term we are looking for is (cf Allen 1985) 

L ~“se = ;Tr V,A [( ~)~m+~~<~~T~~~~o>-<~o~~~~~~~)]* (B.4) 

By virtue of equations (B.3)-(B.4), cross-terms disappear in L(l) + LEaag. if and only if 

p = -$G-‘. This leads to 

L(l) + Lsqe = ~Tr(F,,FpY) + iTr(Dr&) (DrJ) 

By splitting the gauge potential into transverse and longitudinal part on the S” back- 

ground, and following Allen (1985), one obtains an equation similar to (3.6), where the 

mass matrix has 45 eigenvalues rather than 24. Hence (3.10) is proved. 
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Figure captions: 

Figure 1. Flat-space limit of the dimensionless one-loop effective potential at B = 0 (4.13) 

versus y (4.8) is here shown. The curves correspond to the X-values 0.03, 0.02, 0.015, 

0.012 respectively. 

Figure 2. The dimensionless form of the one-loop effective potential in de Sitter space at 

6’ = 0, and /~a = 30 versus y is here shown. The curves correspond to (r,r,6 = 0 and 

the same values of X of figure 1. 

Figure 3. The one-loop potential of figure 2 is evaluated for pa = 300. 

Table captions: 

Table I. The intermediate symmetries, the Higgs directions and the [RR’s of SO(10) 

used for the Higgs scalar fields are here reported for the most physically relevant SO(10) 

GUT models (Acampora et al 1993). With our notation, w,b denotes the 54-dimensional 

irreducible representation of SO(10). 

Table II. For the same models of table I, the masses of gauge bosons are shown (Acampora 

et al 1993). 

Table III. For the same values of the parameters used in figure 3, the values taken by 

ymin and by the dimensionless one-loop effective potential are shown. 
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TABLE I 

I G 

I W4)PS 6% ScT(2)L c3 su(2)‘Q x D 

I W4)PS @ S(i(2)L @ SU(2)R 

W3)c @ SU(2)‘ @ ScT(2)R c+ U(l),-, 1 

Eggs direction 

TABLE II 

G’ M.x/~O’~ GeV Mn/lO” GeV 

T4)PS @ SU(2)L @ su(2)R x D 0.55.1.64’-’ 343.70. 1.25O*’ 

W4)PS 8 SU(2)L @ SU(2)R 5.30. 1.870*’ 1.45.2.090* 

W3)c @ sum @ SU(2)R @ U(l)&& x D 1.64. 2.830f’ 0.32. 1.810*’ 

W3)c @ W2)L @ SU(2)R 8 U(l),-, 11.26. 2.06O*’ 0.03.3.340*1 
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TABLE III 
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